Как из бп компьютера сделать регулируемый. Сделаем зарядное устройство из блока питания компьютера

В наше время наверное только ленивый, не переделывал компьютерный AT или ATX блок питания в лабораторный или зарядное устройство для автомобильной АКБ. И я решил не оставаться в стороне. Для переделки взял старый ATX 350 Вт блок питания с ШИМ контроллером TL494 или его аналогом KA7500B, блоки с таким контроллером легче всего переделывать. Первым делом необходимо убрать лишние компоненты с платы, дроссель групповой стабилизации, конденсаторы, некоторые резисторы, не нужные перемычки, цепь power ON с ней же и компаратор LM393. Стоит заметить что все схемы на TL494 похожи, иметь могут только не большие различия, поэтому для понимания как переделывать БП можно взять типовую схему.

Вообщем вот типовая схема ATX блока питания на TL494.

Вот схема с удаленными лишними элементами.

На первой схеме я выделил участок, этот участок отвечает за защиту от перегрузок по мощности у себя я его счел нужным удалить о чем немного сожалею. Советую этот участок не удалять. В выходной цепи вместо диодной сборки +12 В необходимо поставить диодную сборку Шоттки с максимальным импульсным обратным напряжением 100 В и током 15 А примерно такую: VS-16CTQ100PBF . Электролитический конденсатор после дросселя должен иметь емкость 1000-2200 мкФ и напряжение минимум 25 В. Нагрузочный резистор должен иметь сопротивление 100 Ом и мощность около 2 Вт. Дроссель

После того как все лишние удалено, можно приступить к сборке схемы управления.

Схему управления взял из этой статьи: Лабораторный БП из AT . В этой статье очень подробно описывается переделка.

На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2). Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10). Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

Моя схема

В своей схеме для измерения тока я использую датчик тока ACS712 на эффекте холла, валялся длительное время без дела вот и решил внедрить. Надо отметить, что измеряет он по точнее чем кусок проволоки, ибо имеет маленькую зависимость от температуры так как измерительная часть имеет очень маленькое сопротивление. Кусок же проволоки меняет свое сопротивление с ростом тока.

Сборка

Шунт сделал из текстолита и куска проволоки из черного метала, сопротивление получилось примерно 0,001 Ом, чего вполне достаточно. Крепится к корпусу на стойки для печатных плат.

Разместил все в готовом корпусе:

Готовый корпус заводского изготовления (G768 140x190x80мм).

Чертеж передней панели:

Плата от компьютерного блока питания, легко устанавливается в этот корпус.

Сзади установлен вентилятор охлаждения, он продувает воздух через весь корпус, в верхней крышке насверлил отверстий по бокам для выхода воздуха. Обороты заданы DC-DC преобразователем, питание взято с дежурки 20V.

Плата индикации:

Вид сверху:

Вид снизу:

Плата управления:

Вид сверху:

Вид снизу:

Плата создана в программе Dip Trace

Код программы для Atmega8

Код создан в среде CodeVisionAVR. Особо ничего не придумывал, использовал математику с float. Архив с проектом, в нем же можно найти прошивку

#include #include #include #include // Voltage Reference: AREF pin #define ADC_VREF_TYPE ((0<515){I = (float) (data-515)/20;}; // Переводим в вольты sprintf(lcd_buff,"I=%.2f", I); lcd_gotoxy(9,0); // Выставляем курсор lcd_puts(lcd_buff); // Выводим значение W = V * I; sprintf(lcd_buff,"W=%.3f", W); lcd_gotoxy(0,1); // Выставляем курсор lcd_puts(lcd_buff); // Выводим значение delay_ms(400); // Задаем задержку в 400 миллисекунд } }

#include

#include

#include

#include

// Voltage Reference: AREF pin

#define ADC_VREF_TYPE ((0<

// Read the AD conversion result

unsigned int read_adc (unsigned char adc_input )

ADMUX = adc_input | ADC_VREF_TYPE ;

// Delay needed for the stabilization of the ADC input voltage

delay_us (10 ) ;

// Start the AD conversion

ADCSRA |= (1 << ADSC ) ;

// Wait for the AD conversion to complete

while ((ADCSRA & (1 << ADIF ) ) == 0 ) ;

ADCSRA |= (1 << ADIF ) ;

return ADCW ;

unsigned char lcd_buff [ 16 ] ;

int data ;

float V , I , W ;

void main (void )

// Port D initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRD = (0 << DDD7 ) | (0 << DDD6 ) | (0 << DDD5 ) | (0 << DDD4 ) | (0 << DDD3 ) | (0 << DDD2 ) | (0 << DDD1 ) | (0 << DDD0 ) ;

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTD = (0 << PORTD7 ) | (0 << PORTD6 ) | (0 << PORTD5 ) | (0 << PORTD4 ) | (0 << PORTD3 ) | (0 << PORTD2 ) | (0 << PORTD1 ) | (0 << PORTD0 ) ;

// ADC initialization

// ADC Clock frequency: 125,000 kHz

// ADC Voltage Reference: AREF pin

ADMUX = ADC_VREF_TYPE ;

ADCSRA = (1 << ADEN ) | (0 << ADSC ) | (0 << ADFR ) | (0 << ADIF ) | (0 << ADIE ) | (0 << ADPS2 ) | (1 << ADPS1 ) | (1 << ADPS0 ) ;

SFIOR = (0 << ACME ) ;

// Alphanumeric LCD initialization

// Connections are specified in the

// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu:

// RS - PORTD Bit 0

// RD - PORTD Bit 1

// EN - PORTD Bit 2

// D4 - PORTD Bit 4

// D5 - PORTD Bit 5

// D6 - PORTD Bit 6

// D7 - PORTD Bit 7

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Необходимость подать питание на адаптер для подключения жесткого внешнего диска через гнездо USB к персональному компьютеру заставила вспомнить о давно пылившемся на антресолях блоке питания JNC LC-200A. Напряжение 12 и 5 вольт в наличии есть, тока в достатке. Да что там говорить - профильный блок питания в подобных ситуациях всегда лучший вариант.

Свою функцию он выполнил успешно. Другой источник питания для этих целей решил не искать, вот только смущает обилие проводов выходящих из него наружу. И выход тут один, раз уж решил использовать его постоянно - необходима доработка.

Разобрал блок питания на отдельные узлы, покрасил корпус, просверлил в нижней части отверстия для клемм и установки на днище резиновых ножек (которые и поставил в первую очередь, а то пока соберешь, весь стол железом днища обдерешь).

Клеммы поставил на все виды имеющихся напряжений, пусть будут. Красные «+12», «+5», «+3,3» вольта, а чёрные «0», «-12», «-5». Тем более, что используя их различное сочетание, можно получить весьма широкий спектр постоянных выходных напряжений.

Взялся за плату. Провода, идущие на вентилятор, ранее были просто запаяны - установил разъём на случай необходимости разборки блока питания в дальнейшем.

Из выводных проводов нетронутыми оставил два жгута, остальные укоротил и объединил (в соответствии с цветом и конечно же выходным напряжением).

Плату на место, укороченные провода к клеммам, цельные жгуты вывел наружу.

Привернул верхнюю часть корпуса на место, на одном выводном жгуте оставил разъём питания для подключения жёстких дисков c интерфейсом IDE, на другой установил разъём для дисков с интерфейсом SATA. Клеммы питания подписал самым простым и доступным образом - распечатал необходимые обозначения, наклеил сверху текста скотч, вырезал и приклеил.

Обратная сторона собранного блока питания. Кнопка включения расположилась в удобной нише, случайное включение или выключение её практически невозможно. И это не мелочь, так как при несанкционированном отключении питания от подключённого к компьютеру жесткого внешнего диска возможны неблагоприятные последствия. Пользоваться доработанным блоком питания для подключения ЖВД несравненно удобней, сказал бы даже комфортно. Плюс к этому возможность использования блока питания и для получения других самых различных постоянных напряжений.

Получение разных напряжений - таблица соединений

Получаем Соединяем
24.0V 12V и -12V
17.0V 12V и -5V
15.3V 3.3V и -12V
10.0V 5V и -5V
8.7V 12V и 3.3V
8.3V 3.3V и -5V
7.0V 12V и 5V
1.7V 5V и 3.3V

Также БП стал более компактным и мобильным, поэтому применений ему будет масса - необходимость в мощном и отдельном источнике различных напряжений возникает часто. Автор проекта - Babay iz Barnaula .

Главная тема уже озвучена в заголовке, поэтому перейдём сразу к делу. Итак, что нам понадобится? Во-первых, рабочая автомагнитола или автомобильный CD/MP3-ресивер. У меня на руках оказался автомобильный CD/MP3-ресивер Panasonic CQ-DFX883N.

Во-вторых, компьютерный блок питания формата AT или ATX. Сейчас полно компьютерного железа от старых ПК, в том числе и блоков питания.

Где его можно найти бесплатно или за минимальные деньги?

    Вытащить из своего старого ПК, который пылится в чулане;

    Купить за копейки на "барахолке" - такие 100% есть на любом радиорынке;

    Починить и довести до ума неисправный компьютерный БП.

Для своей затеи я купил "бэушный" блок питания как раз на "барахолке".

Прежде чем подключать компьютерный БП к автомагнитоле - нужно его проверить и, если надо, довести до рабочего состояния. Об этом чуть позже, а пока о том, как подключить автомагнитолу к компьютерному БП.

Подключение автомагнитолы к компьютерному БП.

У компьютерного блока питания (БП) есть здоровый жгут с выходными разъёмами. Провода чёрного цвета - это минус или общий провод. По жёлтым подаётся напряжение +12V. Остальные провода нам будут не нужны - их использовать не будем. Так вот нам нужно от блока питания взять всего-навсего 12V. Для этого берём любой из разъёмов MOLEX или Floppy-разъём. Далее откусываем от него жёлтый провод (+12V) и чёрный провод - минусовой. Затем подключаем эти провода к питающим проводам автомагнитолы.

Стоит отметить, что выходной канал на +12V достаточно мощный и может "отдать" в нагрузку ток в 8-10 ампер (при мощности БП 200 - 300 Вт.), что, собственно, нам и нужно. Обычно, максимальный ток, потребляемый автомобильным CD/MP3-ресивером составляет 10-15 ампер. Но это максимум!

Кроме этого нужно провести лёгкую доработку, если у вас блок питания формата ATX. Об этом расскажу чуть позднее.

У автомагнитолы имеется 3 провода, к которым подключается питание (напряжение +12V) от штатной электросети автомобиля. Чёрный провод - это минус (по другому - общий провод, "земля", Ground ). Жёлтый провод - это +12V (маркируется как Battery ). Это основные провода для подключения питания к автомагнитоле.

Но даже если подключить эти провода к аккумулятору или БП, автомагнитолу мы не включим - она будет в дежурном ("спящем") режиме.

Поэтому ищем красный провод (маркируется ACC ) у автомагнитолы и скручиваем его вместе с жёлтым проводом +12V. Штатно красный провод подключается к замку зажигания авто.

Как только водитель замыкает ключом зажигания электрическую цепь, автомагнитола автоматически переходит из спящего режима в рабочий - включается подсветка дисплея автомагнитолы. При этом красный провод через замок зажигания закорачивается на плюс +12V. Мы же это делаем, принудительно соединяя жёлтый (+12V) и красный провод.

При этом автомагнитола будет включатся сразу же при подаче напряжения.

Отличие компьютерных блоков питания формата AT от ATX.

Компьютерные блоки формата AT не имеют дежурного блока питания +5 (Standby) и выходных напряжений 3,3V. Поэтому при включении такого блока на его выходах +12V, +5V, -12V, -5V напряжение появляется сразу.

У блоков питания формата ATX есть дежурный источник питания на +5VSB (Standby). Он работает всегда, пока блок питания подключен к сети 220V. Чтобы на выходных каналах появились напряжения +12V, -12V, +5V, -5V, +3,3V нужно на главном выходном разъёме замкнуть зелёный и чёрный провод.

Если вы хотите, чтобы выходные напряжения появлялись сразу после включения БП, то можно установить перемычку между зелёным (Power ON ) и чёрным проводом. При этом блок питания будет выходить из "спящего" режима сразу после подачи на него напряжения сети 220V.

Восстановление компьютерного блока питания.

Для начала пробуем включить блок питания. В большинстве случае бывшие в употреблении (б/у или "бэушные") блоки питания от ПК, как правило, рабочие, но имеют некоторые дефекты (отсутствие некоторых выходных напряжений, пониженное напряжение на одном из каналов +12, -12, +5, -5 вольт и т.п.). Даже если блок питания запустился - при этом начнёт крутить вентилятор - стоит вскрыть корпус блока питания, выгрести из него всю пыль, открутить печатную плату и осмотреть контакты на предмет непропая. Если нужно - исправить дефекты.

Перед проведением любых работ необходимо отключать блок питания от сети 220V. Также после этого не помешает принудительно разрядить высоковольтные электролитические конденсаторы входного выпрямителя (220-470 мкФ. * 250V). Сделать это можно подключив на несколько секунд резистор на 100-200 кОм параллельно контактам конденсатора. Естественно, держать пальцами резистор не стоит - иначе можно получить лёгкий удар током.

Эта операция необходима потому, что остаточный электрический заряд конденсаторов опасен (в рабочем режиме на них 200V!). При случайном касании выводов конденсаторов можно получить лёгкий электрический удар. Явление весьма неприятное.

Особое внимание стоит обратить на состояние электролитических конденсаторов выходных выпрямителей . Если они вздуты, имеют разрыв засечки, то их нужно заменить новыми.

Более подробно об устройстве компьютерных блоков питания формата AT рассказано .

Чтобы блок питания выглядел более солидно можно покрасить его аэрозольной краской-спреем (продаётся в любом магазине автозапчастей).

Со скуки решил сделать старый «фокус» из вышедшего на покой компьютерного блока питания ATX 450W, сделать автономный блок питания (БП), например для радиостанции. Блок питания запускался, 12 В. выдавал, значит с ним все не так страшно. Осталось убрать лишнее, добавить необходимое и продлить ему жизнь.

Хотел по подробней заснять весь процесс, но был один, делать и фоткать не получалось.

Характеристики БП вполне приличные, что бы за питать достаточного мощного 12 вольтового потребителя, например радиостанцию.

Вскрываем блок питания и смотрим какие у него проблемы и что там у нас лишнее.

После очистки выяснилось, что высохла емкость на выход 5В., это напряжение нам вообще не нужно, его проще удалить.

Убираем заодно и все провода, со всем разъемами, так много их теперь не нужно.

Черные провода это у нас МИНУС, Желтые + 12 В.. Ну а остальное не важно, пожалуй кроме Зеленого провода, он нам пригодится. Выпаиваем всё лишние, тут кстати очень пригодится паяльник на 150 Ватт. 🙂

Зеленый провод запускает БП из режима «Standby», его в последствии надо замкнуть на минус, туда к черным проводам. Иначе блок питания не запустится.

Ну вот плата от лишнего расчищена, Зеленый провод на месте, из толстых проводов готовим хвостики под клемники, для плюса и минуса.


Проводов нужного сечения в жгуте блока питания не было, хорошо подошли провода для аккумулятора из сгоревшего UPS.

Вот нашел клемники и заодно готовлю светодиод индикации работы БП, это всегда пригодится.

Распаиваем выходные провода и светодиод, делаем предварительный запуск, мало ли что могло случится пока ковырялся на плате.

Осталось разметить отверстия, все просверлить и собрать, навести красоту.

Свободные места в корпусе нашлись, сверло на 8 мм. и все практически готово.

Собираем протягивает, заливаем термоклеем, то что может отвинтится, укладываем провода, впереди поверка и небольшие испытания.

Холостой ход в норме, все стабильно, напряжение 12,3 В.. Можно конечно покопаться и добавить регулировку напряжения в небольшом диапазоне до 14 В.. Но все и так в пределах допустимого, а время уже к концу рабочего дня.

Подключена Моторола GM 340, стоит на передаче, ток 5 А. Для экономного варианта, из БУ, совсем без денег, получился не плохой блок питания. Который еще послужит на пользу человечеству, а не будет просто валяться или разобран за запчасти.

С таким же успехом, можно сделать выводы на напряжения 5В. и 3,3В.